If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+14x-147=0
a = 2; b = 14; c = -147;
Δ = b2-4ac
Δ = 142-4·2·(-147)
Δ = 1372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1372}=\sqrt{196*7}=\sqrt{196}*\sqrt{7}=14\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14\sqrt{7}}{2*2}=\frac{-14-14\sqrt{7}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14\sqrt{7}}{2*2}=\frac{-14+14\sqrt{7}}{4} $
| 0.4m–0.7=0.22 | | -5(x+4)=2x+1 | | 13r+1-15=12 | | 3+z=23 | | 5-1x+1x=-1 | | 17(x+3)=0 | | 135=165+0.75a | | -2(-2w-12)=-18w-20 | | 135=1650.75a | | 18(x+3)=0 | | 3x-6x=4x+48 | | 6/9n=8 | | 3x+89+8x+59=180 | | 1x-7=-4x+23 | | 0.8/1.5=n/3 | | 9+4x=-10x-5 | | x+122=90 | | 0.4(3.2x+2x+2)-x=2x+18 | | 2x+3x-5=10x+10 | | -7c+1+6c=-2 | | (5p+3)^2=12 | | 9(b-4)-7b=5(3b—2) | | 2/5y+y/2=2 | | -5x-44=-7x+18 | | x+x=122+180 | | -4.5=-0.5(n-7.1) | | 3x-20=8x-10 | | 3x+6(2x+3)=75 | | -5x-99=36-10x | | 7/10v3=7/10 | | c+6=3c-42 | | 2(11q+1)=2 |